Expansion method for stationary states of quantum billiards
نویسندگان
چکیده
A simple expansion method for numerically calculating the energy levels and the corresponding wave functions of a quantum particle in a two-dimensional infinite potential well with arbitrary shape ~quantum billiard! is presented. The method permits the study of quantum billiards in an introductory quantum mechanics course. According to the method, wave functions inside the billiard are expressed in terms of an expansion of a complete set of orthonormal functions defined in a surrounding rectangle for which the Dirichlet boundary conditions apply, while approximating the billiard boundary by a potential energy step of a sufficiently large size. Numerical implementations of the method are described and applied to determine the energies and wave functions for quarter-circle, circle, and triangle billiards. Finally, the expansion method is applied to investigate the quantum signatures of chaos in a classically chaotic generic-triangle billiard. © 1999 American Association of Physics Teachers.
منابع مشابه
Boundary Integral Method for Stationary States of Two-dimensional Quantum Systems
The boundary integral method for calculating the stationary states of a quantum particle in nano-devices and quantum billiards is presented in detail at an elementary level. According to the method, wave functions inside the domain of the device or billiard are expressed in terms of line integrals of the wave function and its normal derivative along the domain’s boundary; the respective energy ...
متن کاملشناسایی ترازهای آشوبی بیلیارد استادیوم برحسب شعاع گردش
Nowadays study of chaotic quantum billiards because of their relation to Nano technology. In this paper distribution of zeros of wave function on the boundary of two circular and stadium billiards are investigated. By calculating gyration radius for these points chaotic and non-chaotic states are distinguished.
متن کاملQuantal Andreev billiards: Density of states oscillations and the spectrum-geometry relationship
Andreev billiards are finite, arbitrarily shaped, normal-state regions, surrounded by superconductor. At energies below the superconducting energy gap, single-quasiparticle excitations are confined to the normal region and its vicinity, the mechanism for confinement being Andreev reflection. Short-wave quantal properties of these excitations, such as the connection between the density of states...
متن کاملA Computational Study of the Quantization of Billiards with Mixed Dynamics
We examine the relationship between the spectrum of quantum mushroom billiards and the structure of their classical counterparts, which have mixed integrable-chaotic dynamics. Accordingly, we study the eigenvalues corresponding to eigenfunctions of the stationary Schrödinger equation with homogeneous Dirichlet boundary conditions on half-mushroom-shaped geometries for very high energies/wavenum...
متن کاملEdge effects in graphene nanostructures: I. From multiple reflection expansion to density of states
We study the influence of different edge types on the electronic density of states of graphene nanostructures. To this end we develop an exact expansion for the single particle Green’s function of ballistic graphene structures in terms of multiple reflections from the system boundary, that allows for a natural treatment of edge effects. We first apply this formalism to calculate the average den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999